12. “An Innovative Hydrogen Peroxide-Sensing Scaffold and Insight Towards its Potential as an ROS-Activated Persulfide Donor,” Hankins, R. A.; Suarez, S. I.; Kalk, M. A.; Green, N. M.; Harty, M. N.; Lukesh, J. C., III. Angew. Chem. Int. Ed. 2020, 59, 22238–22245. (

11. “Highly Selective Staining and Quantification of Intracellular Lipid Droplets with a Compact Push-Pull Fluorophore based on Benzothiadiazole,” Suarez, S. I.; Warner, C.; Brown-Harding, H.; Thooft, A.; VanVeller, B.; Lukesh, J. C., III. Org. Biomol. Chem. 2020, 18, 495–499. (

10. COVER ARTICLE: “Selenosulfides Tethered to gem‐Dimethyl Esters: A Robust and Highly Versatile Framework for H₂S Probe Development,” Suarez, S. I.; Ambrose, R.; Kalk, M. A.; Lukesh, J. C., III. Chem. Eur. J. 2019, 25, 15736–15740. DOI: (

Before WFU

9. “Sub-Picomolar Inhibition of HIV-1 Protease with a Boronic Acid,” Windsor, I. W.; Palte, M. J.; Lukesh, J. C., III; Gold, B.; Forest, K. T.; Raines, R. T. J. Am. Chem. Soc. 2018, 140, 14015– 14018. (DOI: 10.1021/jacs.8b07366)

8. “Vinblastine 20’ Amides: Synthetic Analogs that Maintain or Improve Potency and Simultaneously Overcome Pgp-derived Efflux and Resistance,” Lukesh, J. C., III; Carney, D. W.; Dong, H.; Cross, M.; Shukla, V.; Duncan, K. K.; Yang, S.; Brody, D. M.; Brutsch, M.; Radakovic, A.; Boger, D. L. J. Med. Chem. 2017, 60, 7591–7604. (DOI: 10.1021/acs.jmedchem.7b00958)

7. “Total Synthesis of a Key Series of Vinblastines Modified at C4 that Define the Importance and Surprising Trends in Activity,” Yang, S.; Kuppusamy, S.; Skepper, C. K.; Barker, T. J.; Lukesh, J. C., III; Brody, D. M.; Brutsch, M.; Boger, D. L. Chem. Sci. 2017, 8, 1560–1569. (DOI: 10.1039/C6SC04146A)

6. “Ultra-Potent Vinblastines in which Added Molecular Complexity Further Disrupts the Target Tubulin Dimer–Dimer Interface,” Carney, D. W.; Lukesh, J. C., III; Brody, D. M.; Brutsch, M.; Boger, D. L. Proc. Natl. Acad. Sci. USA 2016, 113, 9691–9698. (DOI: 10.1073/pnas.1611405113)

5. “Synthesis of a Potent Vinblastine: Rationally Designed Added Benign Complexity,” Allemann, O.; Brutsch, M.; Lukesh, J. C., III; Brody, D. M.; Boger, D. L. J. Am. Chem. Soc. 2016, 138, 8376– 8379. (DOI: 10.1021/jacs.6b04330)

4. “Organocatalysts of Oxidative Protein Folding Inspired by Protein Disulfide Isomerase,” Lukesh, J. C., III; Andersen, K. A.; Wallin, K. K.; Raines, R. T. Org. Biomol. Chem. 2014, 12, 8598–8602.

3. “A Pyrazine Derived Disulfide-Reducing Agent for Chemical Biology,” Lukesh, J. C., III; Wallin, K.; Raines, R. T. Chem. Commun. 2014, 50, 9591–9594.

2. COVER ARTICLE: “Thiols and Selenols as Electron-Relay Catalysts for Disulfide-Bond Reduction,” Lukesh, J. C., III; VanVeller, B.; Raines, R. T. Angew. Chem. Int. Ed. 2013, 52, 12901– 12904. (Hot Paper Distinction).

1. “A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid,” Lukesh, J. C., III; Palte, M. J.; Raines, R. T. J. Am. Chem. Soc. 2012, 134, 4057–4059. (Highlighted in Chemical & Engineering News. 90(10). March 5, 2012).


4. “Boronic Acid Inhibitors of HIV Protease.” Ronald T. Raines, Ian Windsor, Michael Palte, John Lukesh (2016) US 20160122366.

3. “Organocatalysts of Oxidative Protein Folding.” Ronald T. Raines, John C. Lukesh, III (2016) US 20160052878.

2. “Substituted Pyrazine Dithiol Reducing Agents.” Ronald T. Raines, John C. Lukesh, III (2015) US 20150376591.

1. “Dithioamine Reducing Agents and Method for Reducing or Preventing Disulfide Bond Formation.” Ronald T. Raines, John Lukesh (2013) US 20130211055.